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Abstract
We discuss the semiclassical approaches for describing systems with spin–orbit
interactions. We use these methods to derive trace formulae for several two- and
three-dimensional model systems, and exhibit their successes and limitations.
We also discuss, in particular, the mode conversion problem that arises in the
strong-coupling limit.

PACS numbers: 03.65.Sq, 02.10.De, 05.45.Mt

1. Introduction

The periodic orbit theory (POT) initiated by Gutzwiller over three decades ago [1] has proved
to be a successful tool for the semiclassical description of chaotic systems [2–5]. Several
extensions of Gutzwiller’s semiclassical trace formula to systems with regular and mixed
dynamics [6–14] have made it possible to describe quantum shell effects in many physical
systems in terms of the shortest classical periodic orbits (see [15, 16] for recent reviews).

However, in all the approaches mentioned so far, the spin degrees of freedom have not
been incorporated in the semiclassical theories. This becomes necessary, in particular, when
one wants to apply the POT to systems with spin–orbit interactions, such as nuclei, atoms,
or semiconductor nanostructures. Littlejohn and Flynn [17] have developed a semiclassical
theory of systems with multi-component wavefunctions and applied this [18] to the WKB
quantization of integrable spherical systems with the standard spin–orbit interaction; Frisk
and Guhr [19] have extended their method to deformed systems with spin–orbit interaction.
However, none of these authors have developed an explicit trace formula. Bolte and Keppeler
[20] have recently derived a relativistic trace formula from the Dirac equation. They studied
several non-relativistic limits and rederived the Littlejohn–Flynn (LF) approach in the limit
of a strong spin–orbit coupling, thereby justifying some ad hoc assumptions made in [19]. A
problem that has remained unsolved in the strong-coupling limit is that of the so-called mode
conversion: the semiclassical description breaks down at those points (or subspaces) of the
classical phase space where the spin–orbit interaction locally becomes zero.
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In the present paper, we shall apply the above methods to various two- and three-
dimensional model systems, test their ability to reproduce the coarse-grained quantum-
mechanical level densities of these systems, and explore their limitations. We shall also discuss
the mode conversion problem that arises in the strong-coupling limit. Some preliminary results
of our investigations have been presented in [21, 22].

This paper is organized as follows. After a short reminder of semiclassical trace formulae
for coarse-grained quantum systems in section 2, we review in section 3 the approaches
of [17, 19, 20] which we then apply in the following. In section 4.1 we investigate the
two-dimensional electron gas (2DEG) with a spin–orbit interaction of Rashba type in an
external magnetic field. In section 4.2 we add to this system a laterally confining anisotropic
harmonic-oscillator potential as a model for an anisotropic semiconductor quantum dot.
Section 5 is devoted to a three-dimensional harmonic-oscillator potential with standard spin–
orbit interaction of Thomas type, as in the shell model for light atomic nuclei (see, e.g., [23]).
In section 6, we finally discuss the mode conversion problem and present some supporting
evidence for the diabatic spin–flip hypothesis proposed in [19].

2. Trace formulae with coarse-graining

The primary object of the semiclassical trace formulae is the level density (or density of states)

g(E) =
∑

k

δ(E − Ek) (1)

of a system described quantum-mechanically by the stationary Schrödinger equation

Ĥφk = Ekφk. (2)

We stay throughout in the non-relativistic limit and assume the energy spectrum {Ek} to be
discrete. Classically, the system is described by a Hamilton function H(r,p) = E and
the equations of motion derived from it. The function H(r,p) may be understood as the
phase-space symbol of the operator Ĥ in the limit h̄→ 0.

The level density (1) can be written as a sum of a smooth part and an oscillating part:

g(E) = g̃(E) + δg(E). (3)

The smooth part g̃(E) is given by the contribution of all orbits with zero length [25] in the
POT. It is often easily evaluated by the (extended) Thomas–Fermi theory or by a numerical
Strutinsky averaging [26] of the quantum spectrum (see [15] for the relation of all three
methods). The oscillating part δg(E) is semiclassically approximated by trace formulae of
the form

δgsc(E) =
∑
po

Apo(E) cos

(
1

h̄
Spo(E)− π

2
σpo

)
. (4)

The sum here is over all periodic orbits (po) of the classical system, including all repetitions
of each primitive periodic orbit (ppo). Spo(E) is the action integral and σpo the so-called
Maslov index of a periodic orbit. The amplitude Apo(E) depends on the integrability and the
continuous symmetries of the system. When all periodic orbits are isolated in phase space,
the amplitude is given by [1]

Apo(E) = 1

πh̄

Tppo√
|det(̃Mpo − 11)|

(5)
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where Tppo is the period of the primitive orbit and M̃po the stability matrix of the periodic orbit.
The examples of amplitude factors for systems with continuous symmetries or for integrable
systems may be found in the introduction.

The po sum in (4) does not converge in most cases; it must, in general, be understood as
an asymptotic series that is only semiconvergent. However, much practical use can be made
of trace formulae if one does not attempt to obtain an exact energy spectrum (given by the
poles of the level density), but if one is interested only in the coarse-grained level density. For
this, we define a smoothed quantum-mechanical level density by a convolution of (1) with a
normalized Gaussian:

gγ (E) = 1√
πγ

∑
k

e−[(E−Ek)/γ ]2

. (6)

Here γ is a measure of the desired energy resolution. Applying the convolution to the right-
hand side of (3) will, for small enough γ , not affect the smooth part g̃(E). The convolution of
the oscillating part, applied to the semiclassical trace formula (4) and evaluating the integration
as usual in the stationary-phase approximation, leads to the the coarse-grained trace formula
[7, 27]

δgsc(E) =
∑
po

e−(γ Tpo/2h̄)2Apo(E) cos

(
1

h̄
Spo(E)− π

2
σpo

)
. (7)

The only difference to (4) is the additional exponential factor which suppresses the
contributions from orbits with longer periods. Due to this factor, the periodic orbit sum
now converges for not too small values of γ . Our choice of the Gaussian function in (6) is
rather arbitrary; cf [20] where the regularization of the trace formula is discussed in terms
of a general smooth test function. Balian and Bloch [6] have used a small imaginary part of
the energy, which corresponds to using a Lorentzian smoothing function. In many physical
systems, experimentally observable quantum oscillations could be well approximated through
such coarse-grained trace formulae in terms of only a few short periodic orbits (see [15, 16]
for examples).

3. Periodic orbit theory with spin degrees of freedom

In our present study, we want to apply the POT to systems of fermions with spin s = 1/2,
in which the spin degrees of freedom are involved through an explicit spin dependence of the
Hamiltonian. We write it as

Ĥ = Ĥ 011 + Ĥ 1 Ĥ 0 = p̂2

2m
+ V (r) (8)

and assume the spin-dependent part to have the following general form of a spin–orbit
interaction:

Ĥ 1 = h̄κĈ(r, p̂) ·σ. (9)

Here σ = (σx, σy, σz) is the vector built of the three Pauli matrices and 11 is the unit 2 × 2
matrix acting in the spin space spanned by the Pauli spinors. The Planck constant h̄ in (9)
comes from the spin operator ŝ = 1

2 h̄σ. The constant κ is such that the spin–orbit term has
the correct dimension of an energy; it is composed of natural (or material) constants but does
not contain h̄. The vector C(r,p), which is the phase-space symbol of the operator Ĉ(r, p̂),
may be interpreted as an internal magnetic field with arbitrary dependence on the classical
phase-space variables r,p. In the standard non-relativistic reduction of the Dirac equation,
Ĉ(r, p̂) becomes

Ĉ(r, p̂) = [∇V (r)× p̂] (10)
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with κ = 1/4m2c2; V (r) is an external electrostatic potential. For the spherical Coulomb
potential, (9) and (10) yield the Thomas term (corrected by a factor 2) well known in atomic
physics.

It is by no means trivial, now, to define a classical Hamiltonian corresponding to (8), since
there is no direct classical analogue of the spin. Whereas numerous attempts have been made
over the last seven decades or so to describe the spin classically or semiclassically, only two
approaches have lent themselves to an inclusion of spin degrees of freedom in semiclassical
trace formulae. These are the approaches developed by Littlejohn and Flynn [17, 18], with
extensions by Frisk and Guhr [19], and of Bolte and Keppeler [20]. We refer to these original
papers for all details, as well as for exhaustive references to the earlier literature. Here we
shall briefly present the resulting formulae which will be applied and tested for various model
systems in the following sections.

Bolte and Keppeler [20] started from the Dirac Hamiltonian to derive a relativistic trace
formula which, to our knowledge, has not yet been applied to physical systems. They also
started from the non-relativistic Pauli equation for a charged particle with spin 1/2 in an
external magnetic field B(r), for which we have

Ĥ 0 = 1

2m

[
p̂− e

c
A(r)

]2
+ V (r) Ĥ 1 = − eh̄

2mc
B(r) ·σ. (11)

Using the same techniques as in the derivation of their relativistic trace formula, they discuss
two limits for introducing the semiclassical approximation. The Zeeman term Ĥ 1 in (11)
is not a spin–orbit interaction, but Bolte and Keppeler [20] argue that the extension of their
methods to the more general form (9) is straightforward. We therefore present their approach
below for the general spin–orbit Hamiltonian (9).

3.1. Weak-coupling limit

In the ‘weak-coupling’ limit (WCL), the semiclassical approximation is systematically
performed by the usual expansion in powers of h̄. Because of the explicit appearance of
h̄ in Ĥ1, the limit h̄ → 0 leads to the classical Hamiltonian Hcl(r,p) = H0(r,p) whose
periodic orbits enter the trace formula. The spin degrees of freedom here are not coupled to
the classical motion. Their contribution to the trace formula enters through the trace of a 2×2
matrix d(t) which obeys the ‘spin transport equation’

d

dt
d(t) = −iκ[C(r,p) · σ]d(t) d(0) = 11 (12)

to be evaluated along each periodic orbit rpo(t), ppo(t) found from H0(r,p). This equation
describes the spin precession about the instantaneous internal magnetic field C(r,p) along
the periodic orbit. Using the solution of (12) for each orbit, the trace formula is given, to
leading order in h̄, by [20]

δgsc(E) =
∑
po

Apo(E) trd(Tpo) cos

(
1

h̄
Spo(E)− π

2
σpo

)
(13)

where Tpo = dSpo(E)/dE is the period of each (repeated) orbit. Since the periodic orbits
are not affected by the spin motion, the only difference to the standard trace formula (4) is
the appearance of the spin modulation factor trd(Tpo); all other ingredients are evaluated in
the usual manner for the unperturbed periodic orbits of H0. One may therefore consider this
treatment as an adiabatic limit of fast spin motion and slow spatial motion r(t), but Bolte and
Keppeler [20] argue that this adiabatic assumption is not needed for formula (13) to be true to
leading order in h̄.
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Through the factor trd(Tpo) the contribution of a given periodic orbit depends on the
overlap of the spin directions at the beginning and the end of its period. An orbit for which
these two directions are identical has simply trd(Tpo) = 2, whereas an orbit for which these
directions are antiparallel does not contribute at all to the trace formula (13).

For self-retracing orbits, i.e. librations between two turning points in coordinate space,
the spin precession described by (12) is reversed at each turning point, and hence the spin
direction is brought back to its initial value after a full period. Such orbits therefore only
acquire a trivial factor trd(Tpo) = 2 compared to the trace formula (4). For systems
which possess only self-retracing periodic orbits (see, e.g., the examples in sections 5 and 6),
formula (13) thus reduces to the trivial recipe of incorporating the spin by a simple degeneracy
factor 2 in the level density, which cannot account for the spin–orbit interaction effects.

3.2. Strong-coupling limit

To obtain the ‘strong-coupling’ limit (SCL), Bolte and Keppeler [20] follow the philosophy
of [18, 19] by absorbing the Planck constant h̄ in (11) into the Bohr magneton µ = eh̄/2mc,
thus considering µ as a constant in the semiclassical limit h̄→ 0. Similarly, for the spin–orbit
Hamiltonian (9) one absorbs h̄ into the constant κ̄ = h̄κ . The fact that this corresponds to
a double limit h̄ → 0 and κ → ∞, with κ̄ = h̄κ kept constant, justifies the name ‘strong-
coupling’ limit.

The symbol of the full Hamiltonian in phase space now remains a 2 × 2 matrix which
after diagonalization leads to the two classical Hamiltonians

H±(r,p) = H0(r,p)± κ̄ |C(r,p)| (14)

which can be considered as two adiabatic Hamiltonians with opposite spin polarizations. They
create two classes of dynamics, whose periodic orbits must be superposed in the final trace
formula. Such a trace formula has, however, not been derived explicitly so far. Littlejohn and
Flynn [17] argued that a non-canonical transformation of the phase-space variables r,p would
be necessary to calculate the amplitudes. Frisk and Guhr [19] surmised, based upon Fourier
transforms of quantum spectra, that this is not necessary, provided that the actions S±po of the
periodic orbits generated by the Hamiltonians H± be corrected by some phases accumulated
along the periodic orbits:

1

h̄
S±po→

1

h̄
S±po + ��± ��± =

∮
po

(
λB
± + λNN

±
)

dt . (15)

The phase velocities λB
±, λ

NN
± , which have been called the ‘Berry’ and the ‘no-name’ terms

[17, 18], arise as first-order h̄ corrections in the semiclassical expansion of the symbol of
the Hamiltonian matrix. Bolte and Keppeler [20] have used their techniques to give this
prescription a rigorous justification. For the Hamiltonians (14) with (10), the above phase
velocities can be calculated most easily in terms of the polar angles θ, φ defining the unit
vector of the instantaneous direction of C(r,p), i.e., eC = (cos φ sin θ, sin φ sin θ, cos θ),
and of the Hesse matrix of the potential, V′′ij = ∂2V (r)/∂ri∂rj (i, j = x, y, z), evaluated
along the periodic orbits, and are given by [19]

λB
± = ∓

1

2
(1− cos θ)φ̇ λNN

± = −
κ̄

2
eT

CV
′′eC. (16)

Clearly, in the SCL the spin affects the classical dynamics, albeit only in an adiabatic,
polarized fashion. Moreover, there is a serious limitation to the procedure outlined above.
Whenever C = 0 at a given point in (or in a subspace of ) phase space, the two Hamiltonians
H± become degenerate and singularities arise, both in the classical equations of motion and
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in the calculation of the phase corrections (16) and the stabilities of the periodic orbits. Such
points are called ‘mode conversion’ (MC) points. A similar situation occurs in the chemistry
of molecular reactions when two or more adiabatic surfaces intersect. The MC poses a difficult
problem in semiclassical physics and chemistry that has not been satisfactorily solved so far
for systems with more than one spatial dimension (see [28] for a discussion of the MC in one
dimension).

For self-retracing periodic orbits, all components of the momentum p are zero at the
turning points. Hence, a spin–orbit interaction of the standard Thomas type (10) will, in the
SCL, lead to MC at the turning points. In this case, both the WCL and the SCL break down,
and an improved treatment becomes necessary to include such orbits in a semiclassical trace
formula. A new approach that is free of the MC problem has just been proposed [29]; its
results will be presented in a forthcoming paper.

4. Two-dimensional electron systems with Rashba term

In this section we shall investigate a two-dimensional electron gas (2DEG) with a spin–orbit
interaction of the Rashba type [30]. We will also include an external magnetic field and an
external potential V (r) = V (rx, ry) which causes a lateral confinement of the 2DEG (see,
e.g., [31]). The Rashba term can be written in the form

Ĥ 1 = h̄κĈ(r, p̂) · σ̂ Ĉ(r, p̂) =
 −〈v′z〉p̂y

〈v′z〉p̂x

p̂y∂V (r)/∂rx − p̂x∂V (r)/∂ry

 . (17)

Here 〈v′z〉 is the mean gradient of the electrostatic potential in the z direction that confines the
electron gas to the (x, y) plane, so that z = pz = 0, and the constant κ depends on the band
structure of the semiconductor in which the 2DEG is confined [31]. Note that the Rashba term
(17) is of the standard form (10).

In section 4.1 we shall study the case of the free 2DEG for V (r) = 0 in an external
perpendicular homogeneous magnetic field, for which a quantum-mechanically exact trace
formula is easily derived. We shall see that the WCL approach yields an analytical
semiclassical trace formula which is exact only to leading order in h̄κ and in the limit κ → 0.
The SCL approach, however, for which we also obtain an analytical result, is demonstrated to
fail for κ → 0, but to include correctly the higher order terms in h̄κ , and become exact in the
strong-coupling limit. In section 4.2, we add an anisotropic harmonic confinement potential
V (r) to this system, where the WCL can be applied successfully in numerical calculations.
When the external magnetic field is switched off, the remaining system has only self-retracing
orbits for which both the WCL and the SCL fail. The MC problem arising in the SCL for this
system will be discussed in section 6.

4.1. Free 2DEG with Rashba term in an external magnetic field

We first discuss the free 2DEG with the Rashba spin–orbit interaction (17) in a homogeneous
magnetic field B = B0 ez. The corresponding vector potential A is included by replacing the
momentum operator in the usual way: p̂→ π̂ = p̂− eA/c. The total Hamiltonian then reads

Ĥ = π̂2

2m∗
11 + h̄κĈ(r, π̂) · σ Ĉ(r, π̂) =

−〈v′z〉π̂y

〈v′z〉π̂x

0

 (18)
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where, using the symmetric gauge for A, the mechanical momentum is given by

π̂ =
p̂x

p̂y

0

− eB0

2c

−ry

rx

0

 . (19)

Here m∗ is the effective mass of the electron and e its charge. We have omitted the spin
contribution to the Zeeman term which could be trivially included by adding the magnetic
field to Ĉ.

The quantum-mechanical eigenvalues of the Hamiltonian (18) are known analytically
[30]:

E0 = h̄ωc/2 E±n = h̄ωc(n±
√

1/4 + h̄2ñκ2) n = 1, 2, 3, . . . . (20)

Here ωc = eB0/m∗c is the cyclotron frequency and κ̃ = κ〈v′z〉
√

m∗/ωc is a renormalized
coupling constant which we have defined in such a way that the Planck constant h̄ appears
explicitly in all our formulae1. The exact level density is then given by

g(E) = δ(E − E0) +
∞∑

n=1

[δ(E − E+
n) + δ(E − E−n )]. (21)

Using Poisson summation (see, e.g., [15], section 3.2.2), this result can be identically
transformed to an exact quantum-mechanical trace formula. The smooth part of (21) is
g̃(E) = 2/h̄ωc, and the oscillating part becomes

δg(E) = 2

h̄ωc

∑
±

(
1± h̄̃κ2√

1/4 + 2Eκ̃2/ωc + h̄2κ̃4

)

×
∞∑

k=1

cos

[
k 2π

(
E

h̄ωc

+ h̄̃κ2 ±
√

1/4 + 2Eκ̃2/ωc + h̄2κ̃4

)]
. (22)

We will now analyse the system semiclassically, using both the WCL approach and the
SCL approach. In the weak-coupling limit, we first need the trace formula for the unperturbed
system without spin–orbit coupling, corresponding to Ĥ 0 = π̂2/2m∗. This is the quantized
Landau level system, whose exact trace formula is that of a one-dimensional harmonical
oscillator with the cyclotron frequency ωc and reads [15] (without spin degeneracy factor)

δg(κ=0)(E) = 2

h̄ωc

∞∑
k=1

(−1)k cos

(
k

2πE

h̄ωc

)
. (23)

For the Rashba term in (18), the spin transport equation (12) can be solved analytically [21],
and the spin modulation factor becomes

trd(kTpo) = (−1)k2 cos
[
k 2π

√
1/4 + 2E κ̃2/ωc

]
. (24)

With (13), the complete semiclassical trace formula in the WCL can therefore be written as

δgWCL
sc (E) = 2

h̄ωc

∑
±

∞∑
k=1

cos

[
k 2π

(
E

h̄ωc

±
√

1/4 + 2E κ̃2/ωc

)]
. (25)

This result is not the same as that of exact quantum mechanical (22), but it contains the correct
terms of leading order in h̄, in accordance with the derivation of Bolte and Keppeler [20], and
the correct leading-order term in κ̃2. The missing terms would come about by going to higher
orders in the semiclassical h̄ expansion. Note also that (25) becomes exact in the limit κ̃ → 0.
1 In the literature on the Rashba term, the constant α = h̄2κ〈v′z〉 is frequently used, see [30, 31].
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Recently, Keppeler and Winkler [32] have analysed the anomalous magnetoresistance
oscillations of a quasi-2DEG in GaAs semiconductors, employing two kinds of spin–orbit
interactions one of which was of the Rashba type (18). They applied the WCL trace formula
(13) and obtained good agreement with quantum-mechanical results. As the spin–orbit
interaction in GaAs is rather weak, we assume that their results were not sensitive to the
missing higher order semiclassical terms, which explains their good agreement.

It is very instructive now to compare the above result with that of an analysis using
the strong-coupling limit. The SCL Hamiltonians (14) become H±(r,p) = H0(r,p) ±
¯̃κ
√

2ωcH0(r,p) with ¯̃κ = h̄̃κ . It is easy to see that H0(r,p) = E0 is a constant of motion. The
equations of motion derived from H± therefore become linear, representing one-dimensional
harmonic oscillators as for the Landau orbits of the unperturbed system H0. Instead of the
cyclotron frequencies ωc they have, however, the modified eigenfrequencies

ω± = ωc(1± ¯̃κ
√

ωc/2E0). (26)

Since C(r,p) does not change its sign along the modified Landau orbits, the system does
not suffer from the mode conversion problem and the SCL can be safely applied. The action
integrals of the primitive orbits are simply found to be S± = 2πE0/ωc, as for the unperturbed
system, but expressing them in terms of the conserved total energy E = E0 ± ¯̃κ

√
2ωcE0 one

finds

S±(E) = 2π

(
E

ωc

+ ¯̃κ
2 ∓

√
2E ¯̃κ

2
/ωc + ¯̃κ

4
)

. (27)

The phase velocities (16) are easily found to be λB
± = ∓φ̇/2 = ±ω±/2 and λNN

± = 0, so that
the overall phase correction (15) becomes ��± = ±π for each repetition of the primitive
orbits. Inserting these results into the trace formula of the one-dimensional harmonic oscillator,
i.e., equation (23) with ωc replaced by ω±, using T± = 2π/ω± = dS±/dE, and summing over
both orbit types, we obtain the semiclassical trace formula in the SCL (exhibiting again the h̄

contained in ¯̃κ)

δgSCL
sc (E) = 2

h̄ωc

∑
±

(
1± h̄̃κ2√

2Eκ̃2/ωc + h̄2κ̃4

)

×
∞∑

k=1

cos

[
k2π

(
E

h̄ωc

+ h̄̃κ2 ±
√

2E κ̃2/ωc + h̄2κ̃4

)]
. (28)

It is interesting to note that hereby the Berry term,yielding the phase correction k��± = ±kπ ,
cancels the alternating sign (−1)k in (23). We note that result (28) would be exactly identical
to the quantum-mechanical result (22), if it were not for the missing term 1/4 under the roots.
We see, therefore, that the SCL result will fail in the limit κ̃ → 0, since the alternating sign
(−1)k arises precisely from that missing term 1/4 in the actions. On the other hand, the SCL
trace formula (28) does correctly include the higher order terms in h̄̃κ2, both in actions and
amplitudes, becoming exact in the limit of a large spin–orbit coupling parameter κ̃, as could
be hoped. Note that (28) becomes exact also in the limit of large energy E. That the SCL trace
formula fails in the limit κ̃ → 0 is not surprising because of the non-analytic behaviour of the
Hamiltonians 14, as already pointed out in [17].

4.2. A quantum dot with external magnetic field

We now add a lateral confining potential V (rx, ry) to the previous system. This is a simple
model for a two-dimensional quantum dot which nowadays can easily be manufactured in
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semiconductor heterostructures. We choose the confining potential to be harmonic, so that the
Hamiltonian becomes

Ĥ = π̂2

2m∗
11 +

m∗

2

(
ω2

xr
2
x + ω2

yr
2
y

)
11 + h̄κ Ĉ(r, π̂) · σ̂. (29)

The Rashba term Ĉ now acquires also a z component as in (17) and reads

Ĉ(r, π̂) =
 −〈v′z〉π̂y

〈v′z〉π̂x

m∗ω2
xrxπ̂y −m∗ω2

yryπ̂x

 . (30)

In the case where the two oscillator frequencies ωx and ωy are identical, the total system has
axial symmetry and is integrable even including the spin–orbit term, with the eigenvalues of
the total angular momentum in z direction, Ĵ z = L̂z + ŝz, being constants of the motion. An
exact trace formula can then be found by the EBK quantization following the methods of
[18]. We will not discuss the integrable system here and refer the interested reader to [21]. A
less trivial situation arises when the frequencies ωx and ωy are different and the system with
spin–orbit coupling is no longer integrable.

Since a realistic spin–orbit coupling in most semiconductors is weak, we shall only use
the WCL here to derive a semiclassical trace formula for the Hamiltonian (29). The system
without spin–orbit coupling is biquadratic in the space and momentum variables and can be
transformed to become separable in its normal modes. The normal-mode frequencies are

ω± =
[

1

2

(
ω2

c + ω2
x + ω2

y ±
√(

ω2
c + ω2

x + ω2
y

)2 − 4ω2
xω

2
y

)]1/2

. (31)

The exact eigenenergies are thus given in terms of two oscillator quantum numbers n+ and n−:

En+,n− = h̄ω+(n+ + 1/2) + h̄ω−(n− + 1/2) n± = 0, 1, 2, . . . . (32)

The semiclassical trace formula for such a system is known [33] and quantum-mechanically
exact:

δg(κ=0)(E) =
∑
±

1

h̄ω±

∞∑
k=1

(−1)k
1

sin [kπ(ω∓/ω±)]
sin

(
k

2πE

h̄ω±

)
. (33)

Note that this formula is only useful when ω+/ω− is irrational. For rational frequency ratios,
careful limits must be taken to cancel all singularities, see [33] for details. However, for a
finite external field B0 	= 0, the ratio ω+/ω− can always be made irrational by an infinitesimal
change of the field strength, so that equation (33) is adequate for all practical purposes. The
semiclassical origin of this trace formula is given by the existence of only two isolated rotating
orbits with frequencies ω+ and ω−, whose shapes in coordinate space are ellipses. Each orbit
contributes one of the above two sums; k is the repetition number of the primitive orbits (which
have k = 1).

We next have to calculate the spin modulation factors by solving equation (12) along
the unperturbed elliptic orbits. This could only be done numerically. It is, however,
sufficient to calculate the modulation factors for the primitive orbits only. Using the property
trd(kTpo) = trdk

(Tpo), the final trace formula in the WCL is then given by

δgsc(E) =
∑
±

1

h̄ω±

∞∑
k=1

(−1)k
trdk

(T±)
sin [kπ(ω∓/ω±)]

sin

(
k

2πE

h̄ω±

)
(34)

where T± = 2π/ω± are the periods of the unperturbed primitive orbits.
In figure 1 we compare the results for the oscillating parts δg(E) of the coarse-grained level

density for γ = 0.3 h̄ω0; all energies are in units of h̄ω0. The deformation of the confinement
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Figure 1. Upper three panels: coarse-grained (with γ = 0.3 h̄ω0) oscillating part δg(E) of level
density of the two-dimensional quantum dot with Rashba term (energy units: h̄ω0). Heavy solid
lines: full quantum results (QM) including Rashba term. Dotted line in the top panel: trace formula
(33) for κ = 0. Solid and dashed lines in second and third panels: semiclassical trace formula (34)
(SC) with only first (k = 1) and up to second harmonics (k = 2) included. Lowest panel: spin
modulation factors tr d(T+) and tr d(T−).

potential was fixed by ωx = ω0 and ωy = 1.23 ω0, and the cyclotron frequency was chosen to
be ωc = 0.2 ω0. In our numerical calculations we have set h̄ = ω0 = m∗ = e = c = 〈v′z〉 = 1.
In these units, the spin–orbit coupling parameter was chosen to be κ = 0.1. The heavy solid
lines in the upper three panels represent the full quantum-mechanical result obtained from
an exact diagonalization of the Hamiltonian (29) on the basis of H̃ 0. In the top panel, the
semiclassical trace formula (33) without spin–orbit interaction is shown (only k = 1 and
k = 2 contribute visibly). It clearly demonstrates that the effect of the spin–orbit interaction
on the level density, even at this resolution, is dramatic. In the next two panels, the spin–orbit
interaction has been included in the semiclassical WCL trace formula (34), using the numerical
spin modulation factors. We see that the agreement is improved radically, especially if the
second repetitions (k = 2) are added. The difference between quantum mechanics (QM) and
semiclassics (SC) can clearly be seen only in the close-up (second panel), which selects the
energy region 11∼< E/(h̄ω0)∼< 21, where the disagreement actually is worst. The bottom panel
shows the energy dependence of the two spin modulation factors trd(T+) and trd(T−) of the
primitive orbits. Clearly, the strong long-range modulation in the amplitude of δg(E) is the
result of the spin–orbit interaction; it is correctly reproduced in the WCL approach through
the inclusion of the spin modulation factors.
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This concludes the discussion of the system with magnetic field B0 	= 0. We note at
this point that the case B0 = 0 with irrational frequency ratio ωx/ωy is not accessible in the
WCL. This follows from the fact that in the system without spin–orbit coupling, the only
periodic orbits are the self-retracing librations along the principal axes. As already discussed
at the end of section 3.1, the WCL fails here in that it gives only the trivial modulation factor
tr d(Tpo) = 2 for both the orbits. On the other hand, the SCL suffers from the MC problem.
We will discuss this problem explicitly in section 6, where we return to the above system with
B0 = 0.

5. Three-dimensional harmonic oscillator with standard spin–orbit interaction

We now discuss a three-dimensional system with a spin–orbit interaction of the Thomas type,
as is well known from non-relativistic atomic and nuclear physics. In order to perform as
many calculations as possible analytically, we choose again a harmonic-oscillator potential for
V (r). This potential is not only the prototype for any system oscillating harmonically around
its ground state, but also has actually been used in nuclear physics as a realistic shell model2

for light nuclei [23], provided that the spin–orbit interaction was included with the correct
sign [24].

We thus start from the following Hamiltonian:

Ĥ = Ĥ 011 + h̄κ Ĉ(r, p̂) · σ̂ Ĉ(r, p̂) = ∇V (r)× p̂ (35)

with

Ĥ 0 = 1

2
p̂2 + V (r) V (r) =

∑
i=x,y,z

1

2
ω2

i r
2
i . (36)

Here r = (rx, ry, rz) and p = (px, py, pz) are three-dimensional vectors. We express the
three oscillator frequencies in terms of two deformation parameters α, β:

ωx = ω0 ωy = (1 + α)ω0 ωz = (1 + α)βω0. (37)

and use h̄ω0 as energy units. For α = 0, β = 1 the system has spherical symmetry, for β = 1
and α 	= 0 it has only axial symmetry. κ will be measured in units of (h̄ω0)

−1.
We shall first (section 5.1) briefly discuss the quantum-mechanicalspectrum of the system,

and then (section 5.2) investigate it in more detail by the semiclassical methods. The most
interesting case is that where the oscillator frequencies are mutually irrational, so that the
unperturbed classical Hamiltonian H0 has only self-retracing periodic orbits. In this case the
WCL cannot handle the spin–orbit coupling, and we must resort to the SCL. As we will show,
the leading periodic orbits with shortest periods in this case do not undergo mode conversion.
We therefore use this system for a representative case study, for which a trace formula can be
successfully derived (cf [22, 21]) within the SCL.

5.1. Quantum-mechanical spectrum

In general, the system (35) is not integrable. There are, however, two well-known integrable
cases for which the quantum spectrum is analytically known: the separable system (36) without
coupling (κ = 0) and the spherical system (α = 0) including coupling. The unperturbed
harmonic oscillator has the spectrum

Enxnynz
=

∑
i=x,y,z

h̄ωi(ni + 1/2) ni = 0, 1, 2, . . . . (38)

2 The angular momentum dependent L̂2 term included in the Nilsson model [23] is of minor importance in light
nuclei; it is left out here to simplify our investigation.
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The spherical system (α = 0) with coupling κ 	= 0, for which Ĉ(r, p̂) = ω2
0L̂, has the

spectrum

Enlj = h̄ω0(2n + l + 3/2) + κ(h̄ω0)
2 ×

{
l for j = l + 1/2

−(l + 1) for j = l − 1/2
(39)

where n, l = 0, 1, 2, . . . and j = l ± 1/2 is the total angular momentum. The spin–orbit term
is only to be included for l > 0. Each level Enlj has the usual angular momentum degeneracy
(2j + 1) which equals 2 for l = 0. Note that in nuclear physics, κ is negative [23, 24].

The non-integrable cases require numerical methods for determining the energy spectrum.
Here we used the diagonalization in the basis iny |nx, ny, nz, sz〉 of the unperturbed Hamiltonian
Ĥ 0 (36) with the eigenenergies (38), where |sz〉 with sz = ±1 are the spin eigenstates of σ̂z.
The inclusion of the phase iny leads to real matrix elements; furthermore, the conservation
of the signatures (−1)nx+ny+nz and (−1)nx+ny sz allows one to separate the Hamiltonian matrix
into smaller uncoupled blocks (see [34] for details).

5.2. Semiclassical analysis

5.2.1. Smooth level density. When one wants to compare results of semiclassical trace
formulae with quantum-mechanical level densities, one has to subtract from the latter the
smooth part g̃(E) (see section 2). For the Hamiltonian (35), g̃(E) can be calculated analytically
within the extended Thomas–Fermi (TF) method, which has already been done long ago [35].
The result, as an expansion both in h̄ and powers of κ , reads

g̃(E) = E2

h̄3ωxωyωz

{
1 + h̄2κ2

(
ω2

x + ω2
y + ω2

z

)
+ O(h̄4κ4)

}
+

2E

3h̄2ωxωyωz

{
h̄3κ3

(
ω2

xω
2
y + ω2

yω
2
z + ω2

zω
2
x

)
+ O(h̄5κ5)

}− (ω2
x + ω2

y + ω2
z

)
12 h̄ωxωyωz

×
{

1 + h̄2κ2

(
ω2

x + ω2
y + ω2

z

)2
+ 2

(
ω2

xω
2
y + ω2

yω
2
z + ω2

zω
2
x

)(
ω2

x + ω2
y + ω2

z

) + O(h̄4κ4)

}
. (40)

In the literature, the smooth part is often assumed to be given by the TF model. This leads,
however, only to the leading term proportional to E2. For an accurate determination of g̃(E),
the leading h̄ and h̄2 corrections relative to the TF term may not be neglected.

5.2.2. Trace formulae for the integrable cases. The exact spectra of the integrable cases
offer again the possibility to derive trace formulae that are exact in all orders of h̄. For the
unperturbed harmonic oscillators, these are known [15, 33] and need not be repeated here. For
the spherical case with spin–orbit interaction, the methods of [15, 33, 35] lead to the following
result:

δg(E) = E

(h̄ω0)2

∑
±

∞∑
k=1

1

(1∓ κh̄ω0)2

1

sin [2kπ/(1∓ κh̄ω0)]
sin

(
k
ET±
h̄
− π

2
kσ±

)

+
1

h̄ω0

∑
±

∞∑
k=1

(∓1 + 2κh̄ω0)

2(1∓ κh̄ω0)2

1

sin [2kπ/(1∓ κh̄ω0)]
sin

(
k
ET±
h̄
− π

2
kσ±

)

+
1

h̄ω0

∑
±

∞∑
k=1

1

(1∓ κh̄ω0)2

cos [2kπ/(1∓ κh̄ω0)]

sin2 [2kπ/(1∓ κh̄ω0)]
cos

(
k
ET±
h̄
− π

2
kσ±

)

+
1

h̄ω0

∞∑
k=1

(−1)k+1

2 sin2 (kπκh̄ω0)
cos

(
k
ET0

h̄
− π

2
kσ0

)
(41)
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where the three periods T± and T0 are given by

T± = 2π

ω0(1∓ κh̄ω0)
T0 = 2π

ω0
(42)

and the phases

σ± = ∓2

1∓ κh̄ω0
σ0 = −4κh̄ω0 (43)

play the role of non-integer Maslov integers. When added to the smooth part (40), equation (41)
reproduces the exact quantum spectrum (39). This trace formula thus serves us as a test limit
of the semiclassical results derived below in the non-integrable deformed cases. In T0 we
recognize the period of the classical orbits of the unperturbed Hamiltonian; the shifted periods
T± have to be explained by the periodic orbits of the perturbed system.

In the limit κ → 0, the sum of the smooth term (40) with ωx = ωy = ωz = ω0 and the
oscillating term (41) yields the exact trace formula of the isotropic three-dimensional harmonic
oscillator [15, 33] (which here includes the spin degeneracy factor 2)

g(E) = 1

(h̄ω0)3

[
E2 − 1

4
(h̄ω0)

2

]{
1 + 2

∞∑
k=1

(−1)k cos

(
k

2πE

h̄ω0

)}
. (44)

5.2.3. Fourier transforms. Since we have no explicit quantum spectra of the perturbed
system and therefore cannot derive an exact trace formula, we resort to the method of Fourier
transforms of the quantum spectrum [36] in order to extract information on the periods of the
system. The Hamiltonian (35) has the scaling property

Ĥ (ηr, ηp̂) = η2Ĥ (r, p̂). (45)

We see below that this scaling property holds also in the classical limit if the SCL is used. As a
consequence, the energy dependence of the classical dynamics and thus of the periodic orbits
is simply given by a scaling, and their actions go as Spo(E) = TpoE, whereby the periods
Tpo = 2π/ωpo are energy independent (but depend on κ). Therefore, the peaks in the Fourier
transforms of δg(E) with respect to the variable E will give us directly the periods Tpo in the
time domain, whereby the peak heights are given by the semiclassical amplitudes Apo and
their signs give information on the relative Maslov indices.

In figure 2 we present a series of Fourier transforms of δg(E) obtained from the
numerically diagonalized quantum spectra with a coarse-graining parameter γ = 0.5 h̄ω0.
Here the squares of the Fourier amplitudes in the time domain, plotted for different spin–
orbit coupling strengths κ are shown. A slightly anisotropic ratio of frequencies ωx = ω0,
ωy = 1.1215 ω0, ωz = 1.2528 ω0 was chosen. For κ = 0, the system then has only the three
isolated librating orbits along the principal axes. Indeed, we see at κ = 0 the three dominant
peaks with the corresponding primitive periods Ti = 2π/ωi (i = x, y, z). Their second
harmonics (k = 2) are also resolved; however, due to their larger periods they are of smaller
amplitude. For κ > 0 this simple peak structure is split and ends in a completely different
spectrum at κ = 0.2 (h̄ω0)

−1. The dotted lines are the predictions from the semiclassical SCL
analysis given in the next subsection; the plots on the right-hand side indicate the shapes of
the periodic orbits for increasing κ .

5.2.4. Semiclassical treatment in the SCL approach. We now analyse the system
semiclassically in the SCL. According to section 3.2, the classical Hamiltonians to be used are

H±(r,p) = 1
2p2 + V (r)± κ̄|C(r,p)| (46)
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Figure 2. Fourier spectra of quantum-mechanical level density δg(E) (coarse-grained with
γ = 0.5 h̄ω0) of the three-dimensional harmonic oscillator with deformation α = 0.1212, β = 2,
and various spin–orbit strengths κ in units (h̄ω0)

−1. T is in units of ω−1
0 . For the dotted lines and

the inserts on the rhs, see figure 3.

with C given in (35) and κ̄ = h̄κ as discussed in section 3.2. The spin–orbit term destroys the
integrability of the harmonic oscillator, but the scaling property (45) is still fulfilled. Therefore
the above Fourier spectra should give us the correct periods of the periodic orbits defined by
the Hamiltonians (46).

Periodic orbits. The equations of motion for the Hamiltonians (46) become

ṙi = pi ± εijkκ̄ |C|−1 (Cjω
2
krk − Ckω

2
j rj

)
(47)

ṗi = −ω2
i ri ± εijkκ̄|C|−1

(
Cjω

2
i pk − Ckω

2
i pj

)
i, j, k ∈ {x, y, z}.

This is a non-linear coupled system of six equations, and the search for periodic orbits is not
easy. We have determined them numerically by a Newton–Raphson iteration employing the
stability matrix [21]. Special care must be taken at the MC points where C(r,p) = 0 and
hence equations (47) are ill defined. In general, this leads to discontinuities in the shapes of
the periodic orbits, due to which their stabilities cannot be defined. We shall return to the MC
problem in section 6. It turns out that there exist periodic orbits which are free of MC, i.e. for
which C(r,p) never becomes zero. The existence of some particularly simple orbits follows
from the fact that the three planes rk = pk = 0 (k = x, y, z) in phase space are invariant under
the Hamiltonian flow. The coupled equations of motion for the class of two-dimensional orbits
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Figure 3. (a) The six frequencies ω±ij (50) (units: ω0) for ij = 12, 23, and 31 versus κ̄ (units:

ω−1
0 ). Deformations are as in figure 2. (b) Schematic plot of shapes of the elliptic orbits (κ̄ > 0)

and the unperturbed librating orbits (κ̄ = 0) in the (i, j) plane.

lying in the (i, j) planes are

ṙi = pi ∓ εijk κ̄ sign(Ck)ω
2
j rj

ṗi = −ω2
i ri ∓ εijk κ̄ sign(Ck)ω

2
i pj i, j, k ∈ {x, y, z} (48)

where i and j refer to the in-plane variables and k to the normal of each plane. Assuming that
there exist solutions with Ck 	= 0, we can put sign(Ck) = 1, since for each such orbit, there
exists a time-reversed partner which belongs to the opposite of the two Hamiltonians H±.
Hence we obtain the system of equations

ṙi = pi ∓ εijk κ̄ω2
j rj

ṗi = −ω2
i ri ∓ εijk κ̄ω2

i pj i, j, k ∈ {x, y, z} (49)

which now is strictly linear and can be solved by finding the normal modes. The solutions are
two periodic orbits of ellipse form in each invariant plane (i, j). For the two Hamiltonians
H± this gives altogether 12 planar periodic orbits which come in doubly degenerate pairs. We
therefore find six different orbits (denoted by γ±ij in figure 5 below) with the frequencies

ω±ij =
[(

ω2
j + ω2

i + 2κ̄2ω2
i ω

2
j +

√(
ω2

j − ω2
i

)2
+ 8κ̄2ω2

i ω
2
j

(
ω2

i + ω2
j

))]1/2

. (50)

The rhs of figure 3 shows these frequencies versus the spin–orbit coupling parameter κ̄.
On the lhs we illustrate the periodic orbits for κ̄ 	= 0 (ellipses) and the unperturbed libration
orbits for κ̄ = 0. The periods T ±ij = 2π

/
ω±ij fit perfectly the positions of the most pronounced

peaks in the Fourier spectra of figure 2 (cf the dotted lines there), when the appropriate
deformations ωi , ωj are chosen. Some of the minor peaks may be attributed to non-planar
orbits (see below).

In the spherical limit, the same procedure leads to a very simple analytical result. Due
to the conserved angular momentum L = r × p, most periodic orbits are planar circles. In
each plane, the equations of motion are similar to (49), with the two eigenfrequencies ω± and
corresponding periods T ± given by

ω± = ω0(1± κ̄ω0) T ± = 2π

ω0(1± κ̄ω0)
. (51)

The periods T ± are exactly equal to the two periods T± in (42) that appear in the exact trace
formula (41) of the spherical system3. However, the unperturbed harmonic-oscillator period
3 Note that in the present SCL approach, the constant κ̄ includes a factor h̄, see section 3.2.
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Figure 4. Shapes of four three-dimensional non-planar orbits found in the harmonic oscillator
with deformations as in figure 2 and spin–orbit interaction κ̄ = 0.2 ω−1

0 , projected onto the three
spatial planes. (See text for the periods Tpo and stability traces �1, �2.)

T0 = 2π/ω0 that also appears in (41) cannot be explained by the present solutions in the
SCL. We surmise that it might be connected to the existence of straight-line librating orbits;
these lie, however, on mode conversion surfaces and cannot be treated in the present approach.
In our ongoing studies [29] where the MC problem is avoided, we can, indeed, confirm the
existence of periodic orbits with the period T0.

Besides the above harmonic planar solutions, the full non-linear system (47) leads also
to non-planar three-dimensional periodic solutions with C(r,p) > 0 (or < 0) for which
mode conversion does not occur. Some of these numerically obtained orbits evaluated at
κ̄ = 0.2 ω−1

0 are shown in figure 4. We also give their periods Tpo and partial traces �i which
determine their stabilities (see below). The orbit γ−332 has the period Tpo = 10.08 ω−1

0 which
seems to be supported numerically by a small peak seen in the uppermost Fourier spectrum of
figure 2. The periods of the other orbits from figure 4 could not clearly be identified in the
Fourier spectra; some of these orbits are too unstable and some of the periods lie too close to
those of the leading planar orbits.
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Figure 5. The bifurcation of a planar ellipse orbit under variation of the deformation parameter α.
Upper panels: projection of the orbits onto the (y, z) plane. Lower panel: partial traces �i of the
involved orbits versus α (see text for details).

Stability amplitudes and trace formula for isolated orbits. The amplitude Apo of a periodic
orbit in the trace formula is strongly dependent on its stability. For isolated orbits in a two-
dimensional system, the factor |det(̃Mpo − 11)| in 5 equals |2 − tr M̃po| = |2 − (λ1 + λ2)| =
|2− (λ1 + 1/λ1)|, where λi (i = 1, 2) are the eigenvalues of the stability matrix M̃po, and thus
the quantity tr M̃po contains all information about the stability of an orbit. For a system in
d � 2 dimensions, we can write

|det(̃Mpo − 11)| =
d−1∏
i=1

|�i − 2| (52)

where the ‘partial traces’ �i are the sums of pairs λi , 1/λi of mutually inverse eigenvalues
of the (2d − 2)-dimensional stability matrix M̃po: �i = λi + 1/λi (i = 1, 2, . . . , d − 1). An
orbit is stable when |�i| < 2 for all i, unstable when |�i| > 2 for all i and mixed stable (or
loxodromic) in all other cases. For the latter cases, the stability depends on the phase-space
direction of a perturbation. Whenever �i = +2 for any partial trace, a bifurcation occurs
and the stability denominator (52) becomes zero. In such a situation one has to resort to
uniform approximations [12, 13] in order to obtain finite semiclassical amplitudes. Non-
isolated periodic orbits with �i = 2 occur in degenerate families for systems with continuous
symmetries and are characteristic of integrable systems; for these, the amplitudes must be
obtained differently [6–9]. The symmetry breaking away from integrability can also be
handled perturbatively [10] or with suitable uniform approximations [11, 14].

Most of the orbits that we have found, both planar and non-planar, undergo bifurcations
when the spin–orbit parameter κ̄ or the deformation parameters α, β are varied. A typical
scenario is illustrated in figure 5, where α is varied at fixed κ̄ = 0.1 ω−1

0 and β = 2. The
partial traces �i of the involved orbits are shown. One of the planar ellipse orbits (γ−xy) lying in
the (x, y) plane undergoes an isochronous pitchfork bifurcation at α = 0.3977. The new-born
pair of orbits (γ−bif) is degenerate with respect to a reflection at the (x, y) plane. They are
non-planar warped ellipses which rotate out of the (x, y) plane when α is increased, and then
approach the (x, z) plane. Through an inverse pitchfork bifurcation at α = 0.4450, they finally
merge with another planar ellipse orbit (γ−zx) lying in the (x, z) plane. Near α ∼ 0.425, the
orbit γ−bif suffers from two more bifurcations (the other orbits involved thereby are not shown).



6026 Ch Amann and M Brack

(a) (b)

Figure 6. Bifurcations of the planar periodic orbits γ±ij in the three-dimensional harmonic oscillator
with spin–orbit interaction, given by the SCL Hamiltonians H± in (46). The crosses give the critical
values of the frequencies ωy and ωz versus κ̄ for (a) β = 2 and (b) β = 3. No bifurcations were
found in the regions below the dashed lines.

This example shows that the classical dynamics of the Hamiltonians H± is mixed and
quite complicated due to the unavoidable bifurcations. In principle, isolated bifurcations can
be handled using the well-known uniform approximations [12, 13]. These fail, however,
when two bifurcations lie so close that the difference between the corresponding actions Spo

becomes comparable to or less than h̄. It is outside the scope of the present study to attempt
to regulate the Gutzwiller amplitudes by uniform approximations. In figure 6 we show by
crosses the critical values of the frequencies ωy and ωz (in units of ωx = ω0) versus κ̄ , at
which bifurcations of the planar orbits γ±ij occur for fixed values of the deformation parameter
β = 2 (figure 6(a)) and β = 3 (figure 6(b)). The other deformation parameter α is given
via (37). In the deformation regions below the dashed lines, where no bifurcations occur, the
semiclassical amplitudes can be used without further uniform approximation.

For the contributions of all the isolated periodic orbits away from the bifurcations, we
therefore use the trace formula

δgγ (E) = 1

h̄π

∑
po

e−(γ Tpo/2h̄)2 Tppo√∏d−1
i=1 |�i − 2|

cos

(
1

h̄
Spo + ��po − π

2
σpo

)
(53)

whereby the sum po explicitly includes all periodic orbits of both Hamiltonians H±. The
Maslov indices σpo were evaluated with the methods developed by Creagh et al [37], employing
the recipes given in appendix D of [15]. The terms ��po are the phase corrections (15). For
the planar ellipse orbits lying in the (i, j) planes, we find λB

± = 0 and λNN
± = −κ̄ω2

k

/
2, so

that ��po = −κ̄πω2
k

/
ω±ij .

In figure 7 we show the results obtained for the situation α = 0.1212, β = 2, κ̄ = 0.1 ω−1
0 ,

for which no close-lying bifurcations exist. The quantum-mechanical coarse-grained level
density δg(E) is shown by the solid lines (QM) and includes the spin–orbit interaction in
both curves (a) and (b). The semiclassical results (SC) are shown by dashed lines; in (a)
without spin–orbit interaction, which again demonstrates that the latter dramatically changes
the level density; in (b) with spin–orbit interaction through the trace formula (53). Only the
six primitive planar orbits have been used. We see that this already leads to an excellent
agreement with quantum mechanics, except at very low energies where semiclassics usually
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(a)

(b)

(c)

Figure 7. The coarse-grained level density δg(E) of three-dimensional harmonic oscillator with
spin–orbit interaction κ̄ = 0.1 ω−1

0 (other parameters as in figure 2). Solid lines (QM) give the
quantum-mechanical results with spin–orbit interaction. Dashed lines (SC) give the semiclassical
results according to (53), calculated (a) without and (b) with spin–orbit interaction. (c) Same as
SC in (b), but over a larger energy region.

cannot be expected to work. The curve SC in the lowest panel (c) shows the semiclassical
result over a larger energy scale.

Similar results were obtained in the region of deformations and κ̄ values below the dashed
lines in figure 6, where bifurcations do not occur. In all these cases, it turned out that the
inclusion of the six primitive planar orbits was sufficient within the resolution given by the
coarse-graining width γ = 0.5 h̄ω0. This result is in agreement with the Fourier analysis of
section 5.2.3 of the quantum spectra, where all dominant peaks correspond to the periods of
these six orbits.

6. The problem of mode conversion

In this section we want to discuss the mode conversion (MC) problem that arises in the
strong-coupling limit (SCL) following [17, 18]. In particular, we will discuss an intuitive
method, suggested by Frisk and Guhr [19], to partially avoid the MC problem. This method
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can qualitatively explain some of the peaks observed in the Fourier spectra of the quantum-
mechanical level densities δg(E). It can, however, not be used to calculate the amplitudes
Apo required for the semiclassical trace formula.

For this purpose, we return to the 2DEG with lateral harmonic confinement discussed
in section 4.2, but without external magnetic field (B0 = 0). We shall again assume the
oscillator frequencies ωx and ωy to be incommensurable (i.e. ωx/ωy is irrational). Then, the
system without spin–orbit interaction has only the isolated self-retracing librating orbits along
the axes, and the weak-coupling limit (WCL) approach of [20] cannot handle the spin–orbit
interaction (except for a trivial spin factor 2 in the trace formula). We therefore have to resort
to the SCL approach. In order to simplify the discussion and focus on the important points,
we set m∗ = 1 and ignore the diagonal elements of the spin–orbit interaction. We thus start
from the Hamiltonian

Ĥ = 1

2

(
p̂2

x + p̂2
y + ω2

xr
2
x + ω2

yr
2
y

)
11 + h̄κ

(
0 −p̂x − ip̂y

p̂x + ip̂y 0

)
(54)

which in the SCL leads to the classical Hamiltonians (κ̄ = h̄κ)

H± = 1
2

(
p2

x + p2
y + ω2

xr
2
x + ω2

yr
2
y

)± κ̄
√

p2
x + p2

y . (55)

Before taking the semiclassical limit, we first perform a Fourier analysis of the quantum
spectrum of (54) which is easily diagonalized in the unperturbed harmonic-oscillator basis. The
Hamiltonian (54) does not possess the scaling property (45) of the three-dimensional system
studied in section 5. However, we can use the method of [36] by scaling the parameter κ̄ away.
Dividing equation (55) by κ̄2 and introducing the scaled variables r̃i = ri/κ̄ , p̃i = pi/κ̄ , we
obtain the scaled Hamiltonians

H̃± = 1
2

(
p̃2

x + p̃2
y + ω2

x r̃
2
x + ω2

y r̃
2
y

)±√p̃2
x + p̃2

y = E/κ̄2 = e (56)

so that the classical dynamics does not depend explicitly on κ̄ but is determined only by the
scaled energy variable e. Therefore, a Fourier transform of the quantum spectra along the path
in the (E, κ) plane with constant E/κ2 leads in the time domain to the quasiperiods
T̃ ±po = s±po(e)/e of the periodic orbits of the Hamiltonians (56), whereby s±po are their scaled
actions.

In the lower part of figure 9 below we show the result of the Fourier transforms, taken at
two different scaled energies. For e = 105 h̄ω0/κ̄

2 (dashed line) only two peaks are seen. For
e = 30 h̄ω0/κ̄

2 (solid line), these are slightly shifted and remain the dominant peaks, whereas
four additional small peaks appear (the second of these extra peaks is almost absorbed in the
left dominant peak).

We now analyse the classical dynamics of the Hamiltonians (56). As in the three-
dimensional system analysed in section 5.2.4, we can find orbits lying in the invariant subspaces
of phase space with r̃i = p̃i = 0 for one of the degrees of freedom i (x or y). For the other
degree, the one-dimensional equations of motion become

˙̃ri = p̃i ± sign p̃i
˙̃pi = −ω2

i r̃i . (57)

On the axes p̃i = 0 in phase space these equations are ill defined. It is still possible to solve
the equations for p̃i 	= 0, which leads to portions of a circle in the (p̃i, r̃i ) plane for each sign
of p̃i . One may then connect these partial trajectories to form periodic orbits whose shapes
have, however, kinks. This is illustrated in figure 8(a). Due to the kinks, these orbits are not
differentiable and their stabilities cannot be defined. Their periods can, however, be calculated
analytically and become

T adia
i,+ (e) = 2

ωi

arccos

(
1− 2e

1 + 2e

)
T adia

i,− (e) = 4π

ωi

− 2

ωi

arccos

(
1− 2e

1 + 2e

)
. (58)
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Figure 8. (a) Periodic orbits found from the adiabatic Hamiltonians (56). (b) Diabatic periodic
orbits found by enforcing spin–flips H+ ↔ H− at the mode conversion points.

From the area enclosed by the orbits, we can also obtain the scaled actions:

sadia
i,± (e) =

(
e − 1

2

)
T adia

i,± (e)− 2

ωi

√
2e. (59)

We use the superscript ‘adia’ because the Hamiltonians H± correspond to the adiabatic
situation where the spin polarizations are fixed.

An alternative way to use the partial solutions found from (57) has been proposed by Frisk
and Guhr [19]: instead of joining the two portions obtained for both signs of p̃i on one and the
same of the Hamiltonians H±, one switches between the H±, enforcing a spin–flip at the MC
points: H+←→ H−. This corresponds to the transition from the adiabatic to a diabatic basis.
The orbits thus obtained are continuous circles with continuous derivatives, as illustrated in
figure 8(b), and correspond to simple harmonic librations along the i axes. Their periods and
actions are easily found to be

T dia
i =

2π

ωi

sdia
i (e) =

(
e +

1

2

)
2π

ωi

. (60)

The superscript ‘dia’ indicates that we call these the diabatic orbits. Their periods are those
of the Hamiltonian without spin–orbit coupling: T dia

i = T
(0)

i = 2π/ωi . Although their
shapes are continuous and differentiable, their stabilities still cannot be calculated, because
the Hessian matrices of the H± in phase space are singular at the MC points. In the limit
e→∞, the pairs of adiabatic orbits merge into the diabatic orbits, and we get

T adia
i,± (e) −→ T dia

i

sadia
i,± (e)

e
−→ sdia

i (e)

e
−→ T dia

i . (61)

In the upper part of figure 9, we show the curves sadia
i,± (e)/e by the short and long dashed

lines and the curves sdia
i (e)/e by the solid lines. We see that their values at e = 30 h̄ω0/κ̄

2

correspond exactly to the six peaks appearing in the corresponding Fourier spectrum. The two
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(a)

(b)

Figure 9. (b) Fourier spectra as in figure 2 of the quantum spectrum of the Hamiltonian (54)
with γ = 0.2 h̄ω0, evaluated for two values of the scaled energy e (units: h̄ω0/κ̄

2). Deformation:
ωx = ω0, ωy = 1.23ω0. (a) Quasiperiods s(e)/e from (59) and (60) for adiabatic orbits (dashed
lines) and diabatic orbits (solid lines), respectively, of Hamiltonians (56) versus scaled energy e.

dominant peaks correspond to the diabatic orbits, and the four small peaks correspond to the
adiabatic orbits. For e = 105 h̄ω0/κ̄

2, the only two peaks correspond to the asymptotic values
of sdia

i (e)/e = T dia
i , in agreement with the limit (61).

The evidence of diabatic orbits according to the above spin–flip hypothesis had already
been observed by Frisk and Guhr [19]. They did, however, not recognize any signatures in
their Fourier spectra corresponding to periods of adiabatic orbits involved with MC points,
such as we have found them in the four minor peaks of figure 9. Their conclusion was therefore
that spin–flips always occur at the MC points. Our results seem to suggest that both kind of
dynamics occur. The dominant Fourier peaks are, indeed, those corresponding to the diabatic
orbits which undergo spin–flips at the MC points. However, there must also exist a finite
probability that the orbits stay on the adiabatic surfaces H± = E, leading to the smaller peaks
positioned at the correct adiabatic quasiperiods s(e)/e.

The semiclassical amplitudes required for the trace formula cannot be calculated for the
present system, neither using diabatic nor adiabatic orbits. The fully polarized treatment of
the spin variables used in the SCL approach is obviously not flexible enough to account for
the full dynamics, although the Fourier analysis of the quantum spectra suggests that there is
some partial truth to it. A more complete semiclassical description of the spin motions should
allow for a balanced mixture of adiabatic and diabatic spin motions.

7. Summary and conclusions

We have derived semiclassical trace formulae for several non-relativistic two- and three-
dimensional fermion systems with spin–orbit interactions of Rashba and Thomas types. We
have thereby employed the weak-coupling limit (WCL) developed by Bolte and Keppeler



Semiclassical trace formulae for systems with spin–orbit interactions 6031

[20] and the strong-coupling limit (SCL) of Littlejohn and Flynn [17] with extensions and
justifications of [19, 20].

In the WCL approach, the spatial motion of the particles is taken into account only using
the periodic orbits of the system without spin–orbit interaction. The spin motion is included
adiabatically via the trace of a spin transport matrix d(t) which describes the spin precession
about the instantaneous magnetic field provided by the spin–orbit interaction. Nevertheless,
we found that for a 2DEG in an external magnetic field with and without lateral anharmonic
confinement, the WCL yields excellent results. In the free case, for which an exact trace
formula can be derived, the semiclassical WCL reproduces the exact leading-order terms both
in h̄ and in the spin–orbit coupling constant κ . In the laterally confined case, the gross-
shell structure of the coarse-grained quantum level density was very accurately reproduced
numerically. From our results it can be seen that in the limit of very large spin–orbit constants
κ , the missing higher order terms may restrict the applicability of this method. A particular
situation, where the WCL approach misses the effects of the spin–orbit interaction totally, is
that where only self-retracing isolated periodic orbits exist, for which the trace of d(Tpo) only
yields a trivial spin degeneracy factor 2.

We have studied the SCL approach for two systems possessing exclusively self-retracing
isolated orbits for which the WCL approach fails,namely two- and three-dimensional harmonic
oscillators with irrational frequency ratios. In the SCL approach the mode conversion (MC)
problem, arising at points in phase space where the spin–orbit interaction locally is zero,
imposes severe restrictions, since singularities in the equations of motion and the linear
stability analysis of periodic orbits arise at the MC points. However, in the three-dimensional
case, which provides a realistic shell model for light atomic nuclei, we found that the leading
orbits with shortest periods are free of MC and lead to excellent results of the semiclassical
trace formula for the coarse-grained level density, as long as bifurcations of these orbits are
avoided. (The latter, when they are sufficiently separated in phase space, can be taken into
account using well-developed uniform approximations and do, in principle, not affect the
applicability of the SCL approach.)

In the two-dimensional model of an anisotropic quantum dot, the MC problem could not
be avoided. By a Fourier analysis of the quantum spectrum, we have provided some support
to the diabatic spin–flip hypothesis put forward by Frisk and Guhr [19]. We have to extend
their conclusions, though, in the sense that there is evidence for a mixture of both diabatic
and adiabatic classical motions on the two spin-polarized energy surfaces H± = E, whereby
the diabatic periods dominate the Fourier spectra. But even in the diabatic spin–flip limit,
the semiclassical amplitudes of the trace formula cannot be calculated, and the MC problem
therefore remains essentially unsolved. The connection between the existence of MC points
and real spin–flip processes should therefore be taken with caution. In order to study the
physical relevance of spin–flips in the presence of a spin–orbit interaction, there is a definite
need for a better analytical semiclassical treatment of the spin degrees of motion that is free
of singularities and allows for a balanced mixture of adiabatic and diabatic spin motions.
A new approach [29] in which the MC problem does not arise is presently being developed
and will be presented in more detail in a forthcoming paper.
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